
QUANTA HELPLINE Dilwyn Jones

embers wishing to submit helpline requests via email can use
the email address helpline@quanta.org.uk or if you prefer to
use traditional post, please send the helpline request to me via

the address printed inside the front cover of the magazine.

Obviously, we cannot guarantee to answer every query we receive, but
we will do our best! Where we have been unable to answer the
queries, we may print the help request as an open request in the
magazine to ask if any of the readers can come up with a solution.
And, of course, if readers feel that they have a better solution than we
came up with, or would like to correct any errors we make, please write
to us!

Q I have started using QPC2. This version, as in previous
versions, does not accept AUTO 100,10. The message is INVALID
PARAMETER. When the QL first came out I used AUTO frequently.
I use it as the first instruction when writing a program.

A. In fact, strictly speaking, this is not down to QPC as such, more of a
change in the way the SMSQ/E operating system (or even more
specifically, the SBASIC interpreter) handles program entry and
editing.

In SMSQ/E, or more correctly SBASIC, the AUTO command does not
exist in the way in which it originally did in the original QL SuperBASIC.

SBASIC accepts the keyword AUTO, but implements it like the ED
command in Toolkit 2 – it starts editing at the specified line number. So
you can only give one parameter (the line number), like you can with
ED. Here is a quote from the SuperBASIC Reference Guide, which
explains this:

AUTO - SMS NOTE:
On current versions of SMS, AUTO has been re-coded to be
the same as ED, therefore it will not allow a second parameter,
and merely places you in ED mode with the cursor at the
specified start line number .

M

mailto:helpline@quanta.org.uk

While this may be awkward at first, I suppose the idea is that the ED
command gives you a lot more facilities and flexibility.

Q. Is it possible to change the system fonts, so that I can give all
my programs a different look? I am aware of the CHAR_USE
command to set a different font in a program, but it would be nice
to have all programs using the same font.

A. Sadly, this isn’t possible in original QDOS as the main system font is
held in the ROM and cannot be changed. The designers of SMSQ/E,
however, foresaw this requirement and added a command called
CHAR_DEF to the SBASIC interpreter.

Each channel can have two fonts, one of which normally covers the
usual ASCII range of characters up to code 127 and the other which
covers the extended character set including accented characters and
symbols with higher ASCII codes.

You can use any standard QL system font, there are plenty out there to
download free on the internet from sources such as the Fonts page on
my website at http://www.dilwyn.me.uk/fonts/index.html

You can also create your own, using one of the many font editors out
there.

Before anyone says anything to correct me, Sinclair and most QL
software developers have traditionally used the term “fount” instead of
“font”.

To change the ‘system fonts’ used in SMSQ/E, we use a command
called CHAR_DEF:

CHAR_DEF font1_address, font2_address

As you migh expect, the two addresses simply point to the address of a
font you have loaded into the common heap memory. To do this, you
would test the length of the font file with the FLEN function, use the
ALCHP command to allocate that amount of memory (best to add the
two lengths together into one block and load the fonts one after the
other), then use CHAR_DEF to tell the system where these fonts are.

http://www.dilwyn.me.uk/fonts/index.html

There are two special values which can be used in place of the
address values:

0 = go back to using the ones built into the operating system

-1 = don’t change this setting, useful if you only wanted to change one
of the two fonts, for example.

So, CHAR_DEF 0,0 resets both character sets to that built into the
operating system. CHAR_DEF 0,-1 would reset the first (the one
including letters, numbers etc) to that built into the system, while still
using the existing second font you loaded.

Here is how to load two fonts.

100 REMark set filenames of the two fonts to be used

110 font1$ = 'win1_fonted_serif_font'

120 font2$ = 'win1_fonted_font2_fnt'

130 fontlength1% = FLEN(\font1$)

140 REMark ensure it's an even value

150 IF (fontlength1% MOD 2)=1 THEN fontlength1% = fontlength1%+1

160 fontlength2% = FLEN(\font2$)

170 :

180 REMark allocate memory to hold the fonts

190 font1address = ALCHP(fontlength1%+fontlength2%)

200 IF font1address <= 0 THEN REPORT font1address : STOP

210 font2address = font1address+fontlength1%

220 :

230 REMark load fonts

240 LBYTES font1$,font1address

250 LBYTES font2$,font2address

260 :

270 REMark set the new system fonts

280 CHAR_DEF font1address,font2address

290 :

By now, you may have tried running this program and realised nothing
has changed if you are using the SBASIC windows #0, #1 and #2. This
is because channels already open don’t automatically use the new
fonts for various reasons, the most obvious being that if the font
loading failed, or you accidentally loaded a file of rubbish data, you
would no longer be able to see what you are typing in as the letters,
numbers and symbols might turn to garbage.

So, the safest thing to do is to open a new channel, such as OPEN
#3,scr and test the printed output there with something like LIST #3. If it
works as we expect, CLOSE #3 and next we use the original
CHAR_USE command to set the fonts for the existing channels:

FOR chan = 0 TO 2 : CHAR_USE #chan,font1address,font2address

Indeed, this can hold true for programs which have already been
started before you load the new fonts. The answer is simple – install
the fonts first, before you do anything else such as load other
programs, e.g. install the new fonts in your boot programs.

Used in this way, even “front end” programs like Launchpad can take
on a new appearance using these new system fonts, as long as the
fonts are installed before such programs are started.

You may have come across fonts which include all characters of the
first and second QL fonts, some of the ones on my website for example
– usually these fonts cover the full range of character codes from 31
(the default chequerboard characters) right up to 191, one of the arrow
symbols. To use these simply requires a minor bit of lateral thinking –
we load the font as font1 and simply set font 2 to 0. This means that all
valid characters will now be printed using the new font 1, but any out of
range character codes can still be displayed using the default
chequerboard character:

CHAR_DEF font1address,0

When resetting the fonts back to normal with CHAR_DEF 0,0 you
should remember to deallocate any heap area used for the new fonts,
e.g. with the command RECHP font1address if you used the program
above:

CHAR_DEF 0,0 : RECHP font1address

It is best to do this with no programs running, as the window channels
may not spot the change and carry on trying to use the new system
fonts which are no longer there.

Channels such as the SBASIC windows may not realise you have
changed the default system font back to normal either. You have to use
CHAR_USE commands again to reset them back to normal, but make

sure you have used CHAR_DEF first, otherwise CHAR_USE might end
up using the new fonts, since CHAR_DEF is still pointing to them!
Confused? I certainly was when I first issued these commands in the
wrong order!!!

FOR chan = 0 TO 2 : CHAR_USE #chan,0,0

Q. Is it possible to change the cursor shown by the QL? I’m fed up
of just a flashing red rectangle?

A. Not on a QDOS QL, but recent versions of SMSQ/E can do this, by
allowing a sprite to be loaded and used as a cursor. Recent versions of
SBASIC have new keywords which allow you to load a sprite of 6
pixels across and 10 pixels down.

CURSPRLOAD ‘filename’ is all that all is required once you have a
suitable sprite. You can create 6x10 pixel sprites with most QL sprite
editors such as Easysprite. For example, run this program to build a
little green diamond shape sprite to use in place of the standard cursor.

100 f$ = "ram1_diamond_spr"

110 fl = 104

120 base = ALCHP(104)

130 RESTORE

140 FOR a = 0 TO fl-1

150 READ byte

160 POKE base+a,byte

170 END FOR a

180 SBYTES ram1_diamond_spr,base,fl

190 RECHP base

200 PRINT f$;' created.'

210 STOP

220 :

230 DATA 1,0,0,0,0,6,0,10,0,0

240 DATA 0,0,0,0,0,12,0,0,0,48

250 DATA 0,0,0,0,48,0,0,0,48,0

260 DATA 0,0,120,0,0,0,120,0,0,0

270 DATA 252,0,0,0,252,0,0,0,120,0

280 DATA 0,0,120,0,0,0,48,0,0,0

290 DATA 48,0,0,0,48,48,0,0,48,48

300 DATA 0,0,120,120,0,0,120,120,0,0

310 DATA 252,252,0,0,252,252,0,0,120,120

320 DATA 0,0,120,120,0,0,48,48,0,0

330 DATA 1,0,0,0

Once you’ve run this little program to generate a 104 byte sprite called
diamond_spr in ramdisc ram1_, enter the command CURSPRLOAD
‘ram1_diamond_spr’ to set the sprite as SBASIC’s new cursor.

There are two other handy extensions for turning the sprite cursor off or
on, and not just for BASIC. By giving either the job name, or job number
and job tag (you can see these by listing the running job with the JOBS
command).

CURSPRON “jobname”

or
CURSPRON jobnum,jobtag

turn on the sprite cursor, while

CURSPROFF “jobname”

or
CURSPROFF jobnum,jobtag

turn off the sprite cursor. To allow a job such as SBASIC to turn off its
own cursor sprite, just issue the command CURSPROFF -1.

Using these commands you can replace the flashing cursor for many
programs as long as you know their details, for example, to replace the
Xchange cursor: CURSPRON “Xchange”

The sprite may include transparent pixels, that’s how I was able to cut
out the corners to create the diamond shape, so you could
(theoretically at least) create a rounded cursor, or a hollow box, a
cross, a line or even just a dot, probably even an invisible 6x10 cursor
although I didn’t dare try that one!

If you change the cursor for a pointer driven program, it doesn’t replace
the standard pointer arrow, just the flashing cursor you get when asked
to INPUT something, for example. So if you were to try to change the
cursor for Launchpad or such a program, it would continue to use its
standard pointer arrow for most things, only using the new cursor sprite
when asking you to enter something from the keyboard.

Q. When I used a QL,it was easy enough to save a copy of the
screen with the command sbytes filename,131072,32768. On
modern systems like QPC2 the screen can be bigger and more
colourful. How can I work out how to save one of these bigger
screens – I’m told they can be longer and stored in a different
place in memory.

A. As you have realised, saving a screen picture is a bit more complex
on SMSQ/E systems since the screen size can vary, and its address in
memory can change too. Sorry everyone, this will be a bit of a long
answer!

The good news is that SBASIC has extensions which can help greatly
to simplify saving screen pictures.

In order to save a screen, we need to know

 Its base address in memory

 How many pixels across

 How many pixels down

 The length of each line in bytes

To find where the screen starts in memory, we use the SCR_BASE
function:

LET base_address = SCR_BASE

To find how many bytes between the start of one line and the start of
the next, SBASIC provides the SCR_LLEN function (standing for
Screen Line Length).

LET line_length = SCR_LLEN

The two functions SCR_XLIM and SCR_YLIM tell us the screen x limit
and screen y limits. Used without a channel number, or with the
channel number of the lowest open channel (the primary channel), they
tell us how many pixels across and down the screen respectively.

LET across = SCR_XLIM

LET down = SCR_YLIM

So, adding the information from these functions to an SBYTES
command, we can now save a screen in any mode like this, using this
simple two line program from the SMSQ/E manual:

ssz = SCR_LLEN * SCR_YLIM : REM screen size

SBYTES filename$, SCR_BASE, ssz : REM save the screen

You could easily combine them into one line, like this:

SBYTES filename$, SCR_BASE, SCR_LLEN*SCR_YLIM

And to reload the screen later needs just one simple command, as long
as you know that the file is the right size for the screen mode and
resolution you are using:

LBYTES filename$,SCR_BASE

As ever, though, there is a minor fly in the ointment. The Aurora card.
Some of its display modes surprisingly do not use the full line length!
The aurora is always geared up to have a line length wide enough to
hold 1024 pixel wide screens in 4 colour mode, a fixed line length of
256 bytes per line. Saving and reloading will probably work OK as long
as you are loading the screen back on the same computer. If you used
the above program line to save the screen, it would seem to work, but it
would add the unused memory space to the right of the screen, so you
might get a bigger screen file than you expected and it might either
have a blank or random section to the right of the picture.

If you wish to save a screen comprising of just the actual visible line
length, things become a little more complex, but not impossible by any
means. What you have to do is to calculate how wide each line should
be, and save that amount from each Aurora video line in memory, line
by line, using the PEEK$ function to fetch the relevant part of the video
of each line. To calculate the actual length of the visible line, we have
to know how many bits or bytes correspond to each pixel and save the
right number of bytes for each line.

In MODE 4 and MODE 8, we divide the number of pixels across by 4 to
get the number of bytes. In theory we have to make sure this rounds up
to an even number of bytes. In practice, it always does for a full screen.

MODE 4 and MODE 8: 8 pixels per two bytes.

LET visible_length = SCR_XLIM DIV 4

256 colour (8-bit) screen mode 16: One byte per pixel
LET visible_length = SCR_XLIM

16 bit colour modes 32 or 33 (QPC2, QXL, SMSQmulator, Q40, Q60):
2 bytes per pixel
LET visible_length = 2*SCR_XLIM

To decide which of those to use, we can use the DISP_TYPE function
to tell us the screen display mode:

LET display_mode = DISP_TYPE

SELect ON display_mode

 =0,4,8 : LET visible_length = SCR_XLIM DIV 4

 =16 : LET visible_length = SCR_XLIM

 =32,33 : LET visible_length = 2*SCR_XLIM

END SELect

If new display modes are introduced in the future, it is simple enough to
add to this once you know how many bytes per pixel. For example, a
“true colour” 24-bit mode (MODE 64) would use 3 or 4 bytes per pixel
(most probably a long word per pixel – 4 bytes).

So now we know how much of each Aurora video line to save, we can
create a program which will step through the video memory a line at a
time, saving just the part of each line needed:

OPEN_NEW #3,filename$

REMark set visible_length as above

...

LET video_address = SCR_BASE

FOR y = 0 TO SCR_YLIM-1

 PRINT #3,PEEK$(video_address,visible_length);

 LET video_address=video_address+SCR_LLEN

END FOR y

CLOSE #3

Please note that the line starting with PRINT #3 has a semi-colon at
the end. This is to prevent it adding an unwanted linefeed character
after the PEEK$ function.

Things start getting more complex when we need to read this back, as
we need to read a line at a time from the file and poke it into the screen
in the right place. Fiddly, but not impossible:

OPEN_IN #3,filename$

REMark set visible line length as above

...

LET video_address = SCR_BASE

FOR y = 0 TO SCR_YLIM-1

 LET lne$ = “” : REM fetch copy of current line

 FOR x = 1 TO visible_length : lne$ = lne$&INKEY$(#3)

 REMark place the line into the screen memory

 POKE$ video_address,lne$

 REMark move pointer to start of next line

 LET video_address = video_address + SCR_LLEN

END FOR y

CLOSE #3

This routine will be quite slow for large screens, as it reads the
graphics data back byte by byte, line by line. It may be possible to
speed it up by using a command such as INPUT$ from some toolkits (I
think Turbo Toolkit and DJToolkit have such functions) which read a
given number of bytes from a channel at a time, letting you replace the
two lines LET lne$=”” and FOR x=1 TO… with something like:

LET lne$=INPUT$(#3,visible_length)

When I tried this on my computer, the speedup was quite drastic
compared to using INKEY$.

One word of warning: in the higher colour and resolution modes, saving
screens can result in very large files. I was using 16-bit colour mode in
1024x768 pixel resolution and it created a graphics file 1,572,864 bytes
long. Suddenly I realised why floppy disks can go out of fashion!

If you want to work out in advance what size a file will be, the basic
calculations are as above. Work out how many bytes across a line for
the mode you are using, multiply it by the depth of the screen in pixels
and you have a length (in bytes) of the resultant screen.

A final word on this, for those who may want their software to also work
on non-SMSQ/E systems where these extensions are not present. On
the overwhelming majority of QDOS systems (with the exception of the

uQLx and Atari emulator cards) the screens will always be 32,768
bytes long, starting at address 131072 since standard unpatched
QDOS cannot provide for larger displays or more colours. The question
then is how to protect your program from errors caused by non-existent
extensions. This is actually easier than you might think: check the ROM
version and use IF statements to take different actions. Here’s a
simplified routine, which may not work on the Aurora for the reasons
described above:

v$ = VER$

REMark default values for QDOS

base=131072

size=32768

IF v$ = ‘HBA1’ THEN

 REMark aha, running on SBASIC

 base=SCR_BASE

 size=SCR_YLIM*SCR_LLEN

END IF

SBYTES filename$,base,size

Another way is to make use of freely available extensions in toolkist
which work on both QDOS and SMSQ/E. One example is the Display-
Code toolkit I wrote a few years ago, published in QL Today at the time
and now available to download as freeware from my website’s Toolkits
Page at http://www.dilwyn.me.uk/tk/index.html .

Quanta members can also use a set of extensions called Screen
Parameters, written by Bruno Coativy, available on Library Disk UT01.
This handy little package provides extensions to tell you the screen
address, size, line length and so on.

Q. OK, I think I get that. Now, how can I cut and paste parts of the
picture from one place on the screen to another?

A. Now it becomes really complex! If you are familiar with pointer
environment programming software, it is best to use existing routines
within the programming tools to do this, as the pointer environment
provides routines to save and restore areas of the screen. Not only
does this prevent you having to write unnecessary code, it provides the
most future-proof code basis to ensure that the program you wrote

http://www.dilwyn.me.uk/tk/index.html

does not run into problems in the future when system designers bring
in new video modes, for example.

Sometimes, though, your needs cannot be fully met by existing
software, and anyway, we are all tinkerers, it is our right to explore,
write code, peek and poke here and there – that’s what being a QL
user is all about!

To offer a solution to this, I am going to print a slightly modified listing
based on a routine from Tobias Fröschle, which he published on QL
Forum. It involves working out the address of where the top left of the
block to be copied starts, how many bytes wide it is, how many lines
deep and from that how many bytes needed to store those lines.

To keep things as simple as possible, this routine does not try to cater
for the Aurora special case described above, and it requires a
command such as MOVE_MEMORY to move chunks of memory
about. Such commands are commonly available in many toolkits,
probably the best known being the Turbo Toolkit.

In modes 4 and 8, because there are multiple pixels per byte, it is
easier to write these routines if you make sure that the block to be
saved is a multiple of 8 pixels wide, and that the block starts on a word
boundary (a multiple of 2 bytes or 8 pixels) across the screen.
Otherwise you get into the realms of copying part bytes and shifting
and rotating bits and pixels and that is simply beyond the scope of this
article!

This version of the routine builds up an area save header similar to
those used by the pointer environment, for three reasons:

 To be compatible with pointer environment area save files

 To allow the copied area to be saved to a file as a _pic file, one
of the most common QL graphics file formats

 To allow the copied area to be printed with the SDUMP
command, by supplying the address value returned from this
function to the SDUMP command

To call the routine, call the ScrSave function with four parameters
representing the x and y co-ordinates of the top left of the part to be
saved, plus the width and height (in pixels) of the area to be saved in

memory or copied. In QL modes 4 and 8, the x and w values (origin
across and width) MUST be multiples of 8 pixels wide.

start_address = ScrSave(x_origin,y_origin, wide, high)

The routines have no error trapping as they stand, to keep them fairly
short for publication, I’m sure readers will have fun adding this.

1000 DEFine FuNction ScrSave (x, y, w, h)

1010 LOCal llen, scrBase, bpp, pixlen, blen, maddress

1020 LOCal bstart, mneed, srcPtr, dstPtr, lineNumber

1030 :

1040 REMark set defaults for QDOS in case no SMSQ/E

1050 scrBase = 131072 : llen = 128 : scrMode = 0

1060 bpp = (128 * 8 / 512) / 8 : REMark Bytes per pixel QL

modes (0.25)

1070 IF VER$ = "HBA" THEN

1080 REMark use SMSQ/E values

1090 scrBase = SCR_BASE

1100 llen = SCR_LLEN

1110 scrMode = DISP_TYPE

1120 SELect ON scrMode

1130 =0,4,8 : bpp = (llen * 8 / SCR_XLIM) / 8 : REMark QL

modes

1140 =16 : bpp = 1 : REMark 8-bit colour mode

1150 =32,33 : bpp = 2 : REMark 16-bit colour mode

1160 END SELect

1170 END IF

1180 :

1190 REMark length of one window scanline in bytes, rounded up

1200 REMark in QL colour modes where there is more than one

1210 REMark pixel per byte

1220 IF scrMode < 16 THEN

1230 blen = bpp * 8 * INT ((w + 7) / 8)

1240 ELSE

1250 blen = bpp * w : REMark higher colour modes

1260 END IF

1270 :

1280 REMark start address within screen

1290 bstart = scrBase + (y * llen) + (x * bpp)

1300 :

1310 REMark memory needed +5 words for area save header

1320 mneed = blen * y + 10

1330 maddress = ALCHP(mneed)

1340 :

1350 REMark set up area save header before graphics

1360 POKE_W maddress, HEX('4afc'): REMark header flag 19196

1370 POKE_W maddress + 2, w : REMark remember width

1380 POKE_W maddress + 4, h : REMark remember height

1390 POKE_W maddress + 6,blen : REMark remember line

increment

1400 POKE maddress + 8,DISP_TYPE : REMark remember mode number

1410 POKE maddress + 9,0 : REMark zero the spare byte

1420 :

1430 dstPtr = maddress + 10 : REMark start just after header

1440 srcPtr = bstart : REMark start point of first line

in screen

1450 FOR lineNumber = 1 TO h

1460 MOVE_MEMORY srcPtr TO dstPtr, blen

1470 srcPtr = srcPtr + llen : REMark next line down screen

1480 dstPtr = dstPtr + blen : REMark next line store area

1490 END FOR lineNumber

1500 RETurn maddress

1510 END DEFine ScrSave

1520 :

It is possible to adapt the routine to allow the copied area of the screen
to be saved to a file if you wish, a copy-to-file routine. The easiest way
to do this is to make the ‘mneed’ variable global, by removing it from
the LOCal list in line 1020. That way, all you need to do is to use an
SBYTES command to save the graphic to a file using the start address
and length values:

SBYTES filename$, start_address, mneed

This saves a standard QL _pic file. It can be reloaded later by
allocating the same amount of memory as the length of the file, and will
then be the same as a copied area from the routine above.

start_address = ALCHP(FLEN(\filename$))

LBYTES filename$, start_address

Slight digression: let me formally document the _pic file format here.
It’s basically a block of graphics, with a 10 byte header preamble in the
file storing a flag to identify the type of flag, the idth and height of the
picture (in pixels), the line increment of the graphics in the file (bytes
from start of one line to the next) and the mode number, plus a single
spare unused byte. The offset and length below are in bytes from the
start of the file:

Offset Length Function
0 2 Flag of $4AFC (decimal 19196)
2 2 Width, in pixels
4 2 Height, in pixels

6 2 Line increment, in bytes
8 1 Screen mode number
9 1 Spare, unused byte.
10 start of graphics, in same format as screen mode

it was saved from.

Having copied the relevant part of the screen, you’ll need a matching
routine to paste it back somewhere else on the screen. Call this with
the address returned by the routine above as the first parameter, to tell
it where to paste FROM, then the x and y co-ordinate of the point on
the screen the pasted image should appear at. Note that for QL modes
4 and 8 the x co-ordinate should be a multiple of 8 pixels across, and
the co-ordinates cover the whole screen, starting from top left, down to
the bottom right. Graphics should be pasted back to the same screen
mode as that they were saved from, otherwise it will either look very
odd, or possibly even crash the computer!

1530 DEFine PROCedure ScrPaste (srcAddr,x,y)

1540 REMark paste the part screen stored at scrAddr

1550 REMark to the co-ordinates x,y (top left)

1560 REMark in mode 4 or 8, x must be multiple of 8

1570 LOCal scrBase, llen, blen, bpp

1580 LOCal srcPtr,dstPtr,lineNumber

1590 :

1600 REMark set defaults for QDOS in case no SMSQ/E

1610 scrBase = 131072 : llen = 128

1620 bpp = (128 * 8 / 512) / 8 : REMark Bytes per pixel for

mode 4

1630 IF VER$ = "HBA" THEN

1640 REMark use SMSQ/E values

1650 scrBase = SCR_BASE

1660 llen = SCR_LLEN

1670 scrMode = DISP_TYPE

1680 SELect ON scrMode

1690 =0,4,8 : bpp = (llen * 8 / SCR_XLIM) / 8 : REMark QL

modes

1700 =16 : bpp = 1 : REMark 8-bit colour mode

1710 =32,33 : bpp = 2 : REMark 16-bit colour mode

1720 END SELect

1730 END IF

1740 :

1750 REMark length of a scan line

1760 blen = PEEK_W(srcAddr+6)

1770 :

1780 REMark where are we pasting from?

1790 srcPtr = srcAddr+10

1800 :

1810 REMark where are we pasting to?

1820 dstPtr = scrBase + (y * llen) + (x * bpp)

1830 :

1840 FOR lineNumber = 1 TO PEEK_W(srcAddr+4)

1850 MOVE_MEMORY srcPtr TO dstPtr, blen

1860 srcPtr = srcPtr + blen

1870 dstPtr = dstPtr + llen

1880 END FOR lineNumber

1890 :

1900 REMark to release heap memory automatically after paste,

1910 REMark just remove the REMark from the next line

1920 REMark RECHP srcAddr : srcAddr = 0

1930 END DEFine ScrPaste

As it stands, the ScrPaste procedure does not release the memory
used to hold the copy in memory/ Line 1920 shows how to do this
automatically after each paste – just remove the REMark statement
before the RECHP srcAddr:srcAddr=0 statements.

Alternatively, if you think you might want to make multiple pastes of the
same image, leave that as it stands and elsewhere in your program put
the RECHP srcAddr:srcAddr=0 statements to release the heap
memory once you have finished pasting.

OK, so now you know how to load and save screen and _pic files, plus
how to copy and paste graphics, off you go and write a graphics
program, please!

