
SYNCHRONISING Dilwyn Jones

As our emulators and laptops and pen drives set us ever more free to take our QLs and files with us
wherever we go, one of the problems which arises is that of ensuring we have the latest copies of our
files and documents on whichever QL or emulator we happen to be using at the time.

I often take a QL On A Stick with me when away, work on my QL files using QPC2 and a QXL.WIN on
the USB pen drive, then have to make sure any updated files are copied onto my main QXL.WIN at
home before I work on them at home. When it's just one file, that's easy enough to remember. When
it's a lot of files, it's not so easy unless you are meticulous enough to keep a detailed list of all files
changed so that you can make sure you copy the most recent ones. Even then, it is easy to make a
mistake.

Somewhat embarrassingly, this happened to me fairly recently with my Q-Dock utility, and it cost me
quite some time to undo my mistake, which further delayed release of the program. The problem was
that Q-Dock has quite a lot of files and at home I'd worked on a number of changes to the graphics
before I went away for the weekend, taking a laptop with me and duly made several more changes.

When I returned, it was a couple of days before I touched the program again and of course I'd forgotten
by then what changes I'd made to which files, so I decided to copy the whole lot. Unfortunately, during
a "senior moment" I copied things the wrong way round and ended up with the oldest versions of many
of the graphics - it took me ages to sort it all out.

So, once the mess was sorted out, it became a priority to think of a way to reduce the risk of that
happening again.

Since most QL systems save a file update date value in the headers of files when they are created or
updated, I thought it ought to be possible to compare dates of matching files in the same directories on
both drives and automatically copy files in the right direction to ensure the latest versions of each file
are maintained across both drives.

Synchronising files like this is a common feature of modern computing with its use of mobile technology
and you need to ensure that you always have the most recent copies of important files wherever you
are. Our requirements are thankfully a bit simpler normally - we don't necessarily have to store files in
the "cloud" and other such fairly complex procedures, just across two devices such as a desktop
computer and a pen drive or mobile hard disk.

I wrote a little BASIC program which is essentially a two way copier program, which takes file update
dates into account to decide whether to copy and update files. It will also create new directories if it
spots that new directories have been created.

The program starts off by asking for the names of the two drives to be synchronised, followed by the
name of a directory. If you specify a directory name, only that directory and sub-directories are copied.
If you make a blank entry for the directory name the entire drive is scanned. A recursive directory tree
routine is used for the scanning - the procedure Extended_DIR calls itself to scan each sub-directory
as it is encountered.

The scan works two ways - it runs through the source drive first and once that's been done, the process
is reversed and the second drive is scanned. Files on the source drive which don't exist on the
destinaton drive are copied and the file update date is made the same (to prevent repeated reverse
copying on the second pass with swapped drives). If a copy of a file already exists on the destination
drive, the file update dates are compared and if the file on the destination drive is older, it is overwritten
with a copy of the newer version of the file, and the file update dates are made the same.

The second call to the Extended_DIR procedure merely reverses the process - once files have been

checked and copied from source to destination, we need to repeat the process the other way to ensure
that if there are more recent versions of some files on the target drive, they can be updated to the other
drive too, so the process is fully bi-directional and it doesn't really matter which drive name you enter
first..

The program uses Toolkit 2 extensions such as FUPDT and SET_FUPDT, although these are built into
SBASIC on SMSQ/E systems and provided by the toolkit software o many disk drives, so the program
should work on almost any system which has Toolkit 2 extensions and level 2 directories.

100 REMark Synchronise two drives/directories
110 CLS : CLS #0
120 INPUT #0,'Synchronise drive > ';dr$
130 INPUT #0,'With drive > ';tdr$
140 INPUT #0,'Directory (leave blank for all of drive) > ';dir$
150 IF LEN(dir$) > 0 THEN
160 IF dir$(LEN(dir$)) <> '_' THEN dir$ = dir$ & '_'
170 END IF
180 :
190 PRINT'Synchronising one way...'\\
200 synced = 0 : REMark how many files copied
210 Extended_DIR dr$,tdr$,dir$
220 PRINT \ 'Synchronising the other way...'\\
230 Extended_DIR tdr$,dr$,dir$
240 PRINT synced;' files synchronised in total.'
250 :
260 STOP
270 :
280 DEFine PROCedure Extended_DIR (fdrive$,tdrive$,direc$)
290 LOCal loop,ch,d$,fp,n$
300 ch = FOP_DIR (fdrive$&direc$) : REMark open channel to directory
310 IF ch < 0 THEN RETurn : REMark unable to open directory
320 fp = 14 : REMark file position in directory for filename
330 REPeat loop
340 BGET #ch\fp : IF EOF(#ch) THEN CLOSE #ch : EXIT loop
350 GET #ch,d$: REMark get directory entry name
360 IF LEN(d$) > 0 THEN
370 REMark a directory entry length of 0 may be a deleted file
380 BGET #ch\fp-9: REMark file type byte
390 IF CODE(INKEY$(#ch)) = 255 THEN
400 REMark Directory - may need to create this in destination
410 IF FTEST(tdrive$&d$) <> 0 THEN
420 PRINT' Creating ';d$;'...' : MAKE_DIR tdrive$&d$
430 END IF
440 REMark follow the directory tree
450 Extended_DIR fdrive$,tdrive$,d$: REMark enter directory
460 ELSE
470 REMark File - does it exist on target?
480 BGET #ch\fp+38 : updt1 = GET_LONG(#ch)
490 IF FTEST(tdrive$&d$) = -7 THEN
500 REMark file does not exist on destinaton, so copy
510 PRINT'Copying ';d$;'...' : COPY fdrive$ & d$ TO tdrive$ & d$
520 REMark ensure both copies have same update date
530 SET_FUPDT \ tdrive$&d$,updt1
540 synced = synced+1
550 ELSE

560 REMark Exists, but only copy if file on destination is older
570 updt2 = FUPDT(\ t$&d$)
580 IF updt2 < updt1 THEN
590 REMark destination is older, so replace with source copy
600 PRINT'Copying ';d$;'...' : COPY_O fdrive$&d$ TO tdrive$&d$
610 REMark ensure both copies have same update date
620 SET_FUPDT \ tdrive$&d$,updt1
630 synced = synced+1
640 END IF
650 END IF
660 END IF
670 END IF
680 fp = fp + 64
690 END REPeat loop
700 END DEFine Extended_DIR

N.B. uses a DJToolkit extension called GET_LONG in line 480 so requires use of DJToolkit as it
stands.

However, if you don’t have DJToolkit installed, this is easily changed to use a common Toolkit 2
extension instead. Simply change line 480 to use the GET command from Toolkit 2 instead:

480 BGET #ch\fp+38 : GET #ch,updt1

