
Quanta Helpline Dilwyn Jones

Job2Bas Program

With the increasing use of QL emulators prompting a need
to transfer ever more files between a QL and an emulator,
one solution has been to make use of the ZIP
compression utility to protect the QL executable job
header as a QL program gets transferred through a non-
QL environment.

If you copy a QL program such as Quill into a Windows
folder, for example, Windows does not know how to
handle the QL executable's header, strips it off, and to all
intents and purposes converts what was a program you
could EXEC on the QL into a simple data file. Try to
execute that in QDOS or SMSQ/E and you might well get
an error message such as "bad parameter".

Using QL ZIP to hide away the header does work, but of
course you need to know how to use QL ZIP and UNZIP
as well as know how to transfer the file through another
operating system so that the QL emulator receives the file
intact. Plus there is another little snag - if the QL emulator
has no Unzip program, you will need a copy of Unzip to
Unzip the Zipped copy of Unzip - catch 22.

So I thought I'd attack this problem from another angle
and try to see if I could think of a way of allowing QL
executable programs to pass through another operating
system without losing the file header. This method had to
ensure that apart from Toolkit 2 (which most emulators

either have built in or can load a simple Toolkit 2 ROM
image) the process needs no other significant extra
software.

So, the rather radical solution I cam up with was to convert
the QL program to a SuperBASIC program. Yes, that's
right, a BASIC program.

SuperBASIC and SBASIC programs can pass through
other operating systems as simple data files as long as
you don't change the end of line character by doing
something like loading the QL BASIC program into a
wordprocessor or something like that, which might add
carriage return characters to the end of the lines of BASIC
and so prevent it from running.

What JOB2BAS does is to store the executable program
as a (long) set of DATA statements in a BASIC program,
and adds a few lines of BASIC to those DATA statements
to allow the original program to be reconstituted just by
running the resultant BASIC program on the target
computer.

So the process is:

1. Run the JOB2BAS_bas program
2. Tell it which executable program to encode as a BASIC
program
3. The output BASIC program is written to a file
4. Transfer this new BASIC program (we might call it
OUTPUT_BAS for example) to the target operating
system

5. Copy the BASIC program into the target QL emulator
6. Run it on there and tell it what filename to use to save
the reconstituted executable program. It remembers the
original filename, but you can choose a new filename if
you wish.
7. Having saved the executable program file, you can then
move any other files needed over as well and proceed to
test the software on the emulator.

It is a difficult concept to visualise, but having used the
process once or twice (e.g. to transfer a copy of QL UNZIP
to the emulator!), you should find it's an easy enough
program to use.

There are three options you can change at the start of the
program:

1. First line number of the created BASIC program
2. Line increment step from one line to the next
3. The number of items on each line of DATA values
(higher values allow longer program to be encoded, but
make the output program more difficult to read if you wish
to study it)

Here is the Job2Bas program listing. If you would rather
not type it in, it is available to download from my website
at http://www.dilwyn.me.uk/arch/index.html , where you
will also find a copy of the Unzip program already
processed by this program.

100 REMark JOB2BAS_bas - convert an executable job to a

BASIC program

110 REMark by Dilwyn Jones, September 2011

120 :

130 REMark configuration options

140 line_no% = 1 : REMark first line number of the

outputted S*BASIC program.

150 line_inc% = 1 : REMark line number increment

steps of S*BASIC program

160 datas_per_line% = 4 : REMark number of DATA values

per line

170 :

180 CLS : CLS #0

190 :

200 INPUT #0,'Enter name of program to convert to BASIC

data > ';ip$

210 IF ip$ = '' THEN STOP

220 :

230 INPUT #0,'Filename of BASIC program to save > ';op$

240 IF op$ = '' THEN STOP

250 :

260 OPEN_IN #3,ip$

270 IF FTYP (#3) <= 0 THEN

280 REMark no need to convert data files or S*BASIC

programs

290 CLOSE #3

300 PRINT #0,'No need to convert this file type.'

310 STOP

320 END IF

330 :

340 file_len = FLEN(#3) : REMark length of original

program

350 data_space = FDAT(#3) : REMark dataspace of original

program

360 :

370 IF file_len <= 0 OR data_space <= 0 THEN

380 CLOSE #3

390 PRINT #0,'Unsuitable program file.'

400 STOP

410 END IF

420 :

430 REMark how many long words and any extra (1-3 bytes)

in Job file?

440 no_of_words = INT(file_len/2)

450 oddbytes = file_len-(2*no_of_words)

460 :

470 base = ALCHP(file_len) : REMark use RESPR instead if

your system has no ALCHP extension

480 IF base <= 0 THEN

490 CLOSE #3

500 PRINT #0,'Unable to allocate memory to hold the

original job.'

510 STOP

520 END IF

530 :

540 PRINT #0,'Loading'!ip$!'...'

550 LBYTES ip$,base

560 PRINT #0,'Building output S*BASIC program...'

570 :

580 OPEN_NEW #4,op$

590 :

600 REMark comment start of the S*BASIC equivalent...

610 PRINT #4,line_no%&' REMark '&ip$&' as an S*BASIC

program.'

620 line_no% = line_no% + line_inc%

630 :

640 REMark comment how to recreate the Job program file

650 PRINT #4,line_no%&' REMark just RUN this program to

recreate the original Job file'

660 line_no% = line_no% + line_inc%

670 :

680 REMark add code to output BASIC program to recreate

original Job

690 PRINT #4,line_no%&' :'

: line_no% = line_no%+line_inc%

700 PRINT #4,line_no%&' CLS : CLS #0 : RESTORE'

: line_no% = line_no%+line_inc%

710 PRINT #4,line_no%&' READ words,oddbytes'

: line_no% = line_no%+line_inc%

720 PRINT #4,line_no%&' READ orig_name$,orig_dspace'

: line_no% = line_no%+line_inc%

730 PRINT #4,line_no%&' base = ALCHP((2*words)+oddbytes)

: REM or use RESPR()' : line_no% =

line_no%+line_inc%

740 PRINT #4,line_no%&' FOR a = 0 TO words-1'

: line_no% = line_no%+line_inc%

750 PRINT #4,line_no%&' READ value : POKE_W

base+(2*a),value' : line_no% =

line_no%+line_inc%

760 PRINT #4,line_no%&' END FOR a'

: line_no% = line_no%+line_inc%

770 PRINT #4,line_no%&' IF oddbytes > 0 THEN'

: line_no% = line_no%+line_inc%

780 PRINT #4,line_no%&' READ value : POKE

base+(2*words),value' : line_no% =

line_no%+line_inc%

790 PRINT #4,line_no%&' END IF'

: line_no% = line_no%+line_inc%

800 PRINT #4,line_no%&' PRINT #0,"Original filename was

";orig_name$' : line_no% =

line_no%+line_inc%

810 PRINT #4,line_no%&' INPUT #0,"Save as filename >

";op$' : line_no% =

line_no%+line_inc%

820 PRINT #4,line_no%&' IF op$ = "" THEN STOP'

: line_no% = line_no%+line_inc%

830 PRINT #4,line_no%&' PRINT #0,"Saving ";op$'

: line_no% = line_no%+line_inc%

840 PRINT #4,line_no%&' SEXEC

op$,base,2*words+oddbytes,orig_dspace'

: line_no% = line_no%+line_inc%

850 PRINT #4,line_no%&' RECHP base : REMark remove if

using RESPR() above' : line_no% =

line_no%+line_inc%

860 PRINT #4,line_no%&' PRINT #0,"Program finished"'

: line_no% = line_no%+line_inc%

870 PRINT #4,line_no%&' STOP'

: line_no% = line_no%+line_inc%

880 PRINT #4,line_no%&' :'

: line_no% = line_no%+line_inc%

890 :

900 REMark how many long words and any extra bytes...

910 PRINT #4,line_no%&' DATA '&no_of_words&','&oddbytes&'

: REMark number of LONG WORDS and ODD BYTES at end'

920 line_no% = line_no% + line_inc%

930 :

940 REMark what was the original filename?

950 PRINT #4,line_no%&" DATA '"&ip$&"' : REMark original

Job program's filename."

960 line_no% = line_no% + line_inc%

970 :

980 REMark what was the original dataspace?

990 PRINT #4,line_no%&' DATA '&data_space&' : REMark

original dataspace'

1000 line_no% = line_no% + line_inc%

1010 PRINT #4,line_no%&' :' : REMark just a spacer line

1020 line_no% = line_no% + line_inc%

1030 :

1040 REMark start to assemble the program data

1050 dpl% = 0 : REMark how many DATA items on current

line so far?

1060 lne$ = line_no%&' DATA '

1070 :

1080 FOR a = base TO base+file_len-1 STEP 2

1090 word = PEEK_W(a) : REMark get a word

1100 IF dpl% >= datas_per_line% THEN

1110 PRINT #4,lne$: REMark output the line

1120 line_no% = line_no% + line_inc%

1130 lne$ = line_no% & ' DATA '&word

1140 dpl% = 1

1150 ELSE

1160 REMark still room on this line

1170 REMark add a comma before value (unless this is

the first item after DATA)

1180 IF dpl% > 0 THEN lne$ = lne$&','

1190 lne$ = lne$ & word : REMark add to DATA list

1200 dpl% = dpl% + 1

1210 END IF

1220 NEXT a

1230 IF dpl% > 0 THEN PRINT #4,lne$: REMark part line

to output

1240 END FOR a

1250 :

1260 IF oddbytes THEN

1270 REMark any odd bytes (1 to 3) to add?

1280 line_no% = line_no%+line_inc%

1290 lne$ = line_no%&' DATA '

1300 FOR a = 1 TO oddbytes

1310 IF a > 1 THEN lne$ = lne$&','

1320 lne$=lne$&PEEK(base+file_len-oddbytes)

1330 END FOR a

1340 PRINT #4,lne$

1350 END IF

1360 :

1370 REMark finished, so tidy up

1380 CLOSE #3 : REMark input JOB file

1390 CLOSE #4 : REMark output BASIC file

1400 RECHP base : REMark REM out this line if no RECHP

command on your system

1410 :

1420 REMark tell user we have finished

1430 PRINT #0,'Program finished.'

1440 PRINT

'Transfer'!op$!'to'!'the'!'required'!'system,'!'then'!'ju

st'!'RUN'!'it'!'to'!'recreate'!'the'!'Job'!'program'!'fil

e!'

1450 STOP

