
QUANTA HELPLINE Dilwyn Jones

Members wishing to submit helpline requests via email can use the email address
helpline@quanta.org.uk or if you prefer to use traditional post, please send the helpline
request to me via the address printed inside the front cover of the newsletter.

Obviously, we cannot guarantee to answer every query we receive, but we will do our best!
Where we have been unable to answer the queries, we may print the help request as an open
request in the newsletter to ask if any of the readers can come up with a solution. And, of
course, if readers feel that they have a better solution than we came up with, or would like to
correct any errors we make, please write to us!

Merge Sorting, Duplicates and Binary Searching

For this issue, I’m going to discuss merge sorting files, searching lists and eliminating
duplicates. I received what appeared to be a simple and straightforward query via the
helpline a few weeks back and didn’t realise at first how much work would be involved in
researching it! As you’ll see below, the reply turned into quite a full-blown article.

The original question was:

“I have a number of word list files containing thousands of words, each sorted into
alphabetical order. What I’d like to do is to join these files together into one sorted list and
eliminate any duplicates resulting from joining together the lists, then add my own words to
the list. I’ve tried using various QL text editors and word processors and none really seems to
manage such long lists of words.”

Dealing with the last sentence of the query first – the usual reason is that since word lists are
usually a text file list with an end of line character at the end of each word, word processors in
particular see these lines as very short paragraphs. For example, here’s a simple list:

and
but
either
or

In a plain text file on the QL, these words are all followed by a linefeed character, otherwise
known as CHR$(10). Word processors usually work by paragraphs, not individual lines of
text. So short lines quickly eat up the available number of paragraphs.

Some QL text editors and word processors use a 16 bit line counter value, limiting the
program to an absolute maximum of 32,767 entries (or about 65535 if using unsigned
arithmetic). Word lists of the type described, especially if to be used with a spell checker
program, for example, can easily consist of 20,000 to 50,000 words and if you join these
together, you will quickly see that word processors in particular will quickly struggle to control
this number of paragraphs, however small they might be! Equally, if the lists are to be
handled by a BASIC or compiled BASIC program, with the words held in arrays, you will just
as quickly run into problems as the maximum number of array entries you can get into a string
array is also about 32,767 entries and anyway, just imagine the time it would take to try to sort
such a huge number of strings in BASIC. You could try using Steve Poole’s arborescent sort
routines previously published in Quanta, or Alan Turnbull’s Quicksort on Library disk UG01, or
even Ron Dwight’s machine code sorting routines on the same disk, but any sort of this
nature will only be able to cope with the maximum possible dimensions of string arrays in
BASIC.

So we need to look at this from a different perspective.

Merge Sort

mailto:helpline@quanta.org.uk

As the word lists are already in a sorted file (I’m presuming these are the kind of word lists
you can download from the internet, e.g. from Geoff Wicks’s website at
http://members.multimania.co.uk/geoffwicks/dictionaries.htm or from my website at
http://www.dilwyn.me.uk/diction/index.html) one simple way of joining the files and sorting
while merging is to use something called a Merge Sort. Basically what this does is to take
one entry from each file and write the appropriate entry (usually the lowest in alphabetical
order) to a new output file, then read another entry from the same input file and keep doing
this until the supply of words from one file is exhausted, then write out the remainder of the
other file until that too is exhausted. And so am I after typing that – don’t worry, it’s actually
easier than it sounds!

At this point I’d like to express my gratitude to Miguel Angel Rodriguez Jodar who works as an
associate professor at the Architecture and Computer Technology Dept., University of Seville,
Spain. Besides his academic duties, he runs a small computer museum, placed at the main
hall of the Computing Science High College facilities. Miguel also has a website for people
who tinker mostly with Spectrum hardware projects at http://www.zxprojects.com and he also
takes an interest in QL systems. I asked for help with this query on the ql-users mailing list
and true to the helpful nature of that list, Miguel popped up to offer me a “pseudo code” listing
(not a QL BASIC listing, although fairly similar) which I could use as the basis for a QL BASIC
routine.

A little bit of QL BASIC programming later and here’s what I came up with. The listing should
be fairly self-explanatory – I’ve included a lot of REMark statements to explain what each part
does. Please note: both input files must already have been sorted into alphabetical order.

1000 DEFine PROCedure Merge_Sort_Files (inputfile1$,inputfile2$,outputfile$)

1010 LOCal x$,y$,loop1

1020 OPEN_IN #3,inputfile1$

1030 OPEN_IN #4,inputfile2$

1040 OPEN_NEW #5,outputfile$

1045 :

1050 IF EOF(#3) OR EOF(#4) THEN

1060 REMark oops, one file is empty before we've even started!

1070 IF EOF(#3) THEN

1080 Copy_Remainder #4 TO #5 : REMark file1 is empty

1090 ELSE

1100 Copy_Remainder #3 TO #5 : REMark file2 is empty

1110 END IF

1120 ELSE

1130 REMark neither file empty, so get first entry from both files

1140 INPUT #3,x$

1150 INPUT #4,y$

1155 :

1160 REPeat merging

1170 REMark compare x$ and y$

1180 IF x$ < y$ THEN

1190 REMark element x$ is smaller; write x$ to output file

1200 REMark and read new x$ provided there is any;

1210 REMark otherwise copy the rest of file2 to output file

1220 PRINT #5,x$

1230 IF NOT EOF(#3) THEN

1240 INPUT #3,x$

1250 ELSE

1260 PRINT #5,y$: Copy_Remainder #4 TO #5 : EXIT merging

1270 END IF

1280 ELSE

1290 REMark element y$ is smaller; write y$ to output file

1300 REMark and read new y$ provided there is any

1310 REMark otherwise copy the rest of file1 to output file

1320 PRINT #5,y$

1330 IF NOT EOF(#4) THEN

1340 INPUT #4,y$

1350 ELSE

1360 PRINT #5,x$: Copy_Remainder #3 TO #5 : EXIT merging

http://members.multimania.co.uk/geoffwicks/dictionaries.htm
http://www.dilwyn.me.uk/diction/index.html
http://www.zxprojects.com/

1370 END IF

1380 END IF

1390 END REPeat merging

1400 END IF

1410 CLOSE #3 : REMark input file1

1420 CLOSE #4 : REMark input file2

1430 CLOSE #5 : REMark output file

1440 END DEFine Merge_Sort_Files

1450 :

1460 DEFine PROCedure Copy_Remainder (ip_chan,op_chan)

1470 LOCal copying,y$

1480 REPeat copying

1490 IF EOF(#ip_chan) THEN EXIT copying

1500 INPUT #ip_chan,y$

1510 PRINT #op_chan,y$

1520 END REPeat copying

1530 END DEFine Copy_Remainder

LISTING 1 : mergesort2_bas

So, that solves the first part of the problem – to merge sort the two input files, just enter the
command Merge_Sort_Files ‘file1’,’file2’,’output_file’ (enter the relevant filenames in place of
‘file1’, ‘file2’ and ‘output_file’ of course).

Eliminate Duplicates

The next step is to eliminate duplicates from the merged list. I’ll treat this a separate
programming issue just to simplify the matter. We need to remember that what we have done
is to merge two text files into one, both of which were already sorted, and the newly created
merged file is also in alphabetical order.

The easiest way of doing this is to copy all of the entries from the new file into yet another
new file. We remember what the last entry was, and if the next entry is the same, we simply
don’t copy it.

100 DEFine PROCedure Eliminate_Duplicates (original_file$,new_file$)

110 LOCal copying,word$

120 OPEN_IN #5,original_file$

130 OPEN_NEW #6,new_file$

140 previous$ = '' : REMark remember what previous entry was

150 REPeat copying

160 IF EOF(#5) THEN EXIT copying : REMark all done

170 INPUT #5,word$

180 IF NOT(word$ == previous$) THEN

190 PRINT #6,word$

200 previous$ = word$

210 END IF

220 END REPeat copying

230 CLOSE #5 : CLOSE #6

240 END DEFine Eliminate_Duplicates

LISTING 2 : eliminateduplicates_bas

So if we wanted to eliminate duplicate entries from a file called “mergedwords_txt” we would
use the above routine to copy the file to a new file called “noduplicates_txt” as follows,
assuming that both files are/will be in ram drive 1:

Eliminate_Duplicates “ram1_mergedwords_txt” TO “ram1_noduplicates_txt”

Note how I use the keyword TO instead of a comma between the filenames. You can use
either. I just find the keyword TO makes it easier to read – more meaningful. This is one of
the great things about QL BASIC. Another is the use of the “approximately equal to” operator,
which allows strings to be compared irrespective of case, that is, it allows the QL to treat
DILWYN and DiLwYn as being equal. Very useful – it helps prevent you having to convert all

string text to the same case for comparison purposes, using functions like UPPER$ and
LOWER$ available in some toolkits.

The mergesort routine above copes with having some words in the files in what is called
Mixed Case, i.e. proper nouns with the first letter in upper case. It simply puts upper case
words first.

Adding New Entries

The last part of this project is to allow new words to be added to the list. I’ll look at a couple of
ways of doing this, both of which have their limitations, but at least should offer me the
chance to explain searching through sorted files to locate matching entries and how to
determine where the new entry should go.

First, I’ll look at the simplest brute force approach! Basically, it’s as simple as copying the
entire file until we find the point at which the new word should go, insert the new word at that
point, then copying the remainder of the file to the new file. The trouble with this type of brute
force approach is that (a) we have to search through the entire file for every word entered,
which might take a long time if it’s a word which comes late in the alphabet, such as the word
‘zebra’, and (b) we have to copy to a new file each time, so it needs twice as much space.

Here is one way of achieving this. We take the ‘safe’ approach of copying the amended file to
a new name, before deleting the original, copying the new file to the original name and once
all that’s been successful, delete the newly created temporary file.

100 REMark add a new entry to a file

110 CLS : CLS #0

120 INPUT #0,'Word list filename > ';ip$

130 INPUT #0,'Name of temporary file > ';op$

140 REPeat program

150 CLS # 0

160 INPUT #0,'New word > ';word$

170 IF word$ = '' THEN EXIT program

180 OPEN_IN #3,ip$

190 OPEN_NEW #4,op$

200 found% = 0

210 REPeat write_out

220 IF EOF(#3) THEN EXIT write_out

230 INPUT #3,str$

240 IF str$ == word$ AND found% = 0 THEN found% = 1

250 IF found% = 0 THEN

260 IF str$ > word$ THEN

270 REMark found where to add the new word

280 PRINT #4,word$

290 found% = 1

300 END IF

310 END IF

320 PRINT #4,str$

330 END REPeat write_out

340 IF found% = 0 THEN PRINT #4,word$

350 CLOSE #3

360 CLOSE #4

370 REMark change filename back to original

380 DELETE ip$

390 COPY op$ TO ip$

400 DELETE op$

410 END REPeat program

LISTING 3 : addwordstolist_bas

The above approach works, but is slow and clumsy, although it can (slowly) handle very large
word lists subject to enough space being available on the media to hold both the original and
temporary new file.

An easier way, if the list is not too long to fit into a string array, is to load the file into a string
array and use a method known as a “binary chop” to locate where the new word should be
added, or indeed if the word already exists in the array. This involves starting to look halfway
through the list and see which half the word is likely to belong in. Having worked that out, we
then split that half into a further pair of halves and repeat the process until we find the
required point.

100 REMark using binary search to add data to a pre-sorted array

110 REMark array is called array$()

120 max% = 500 : REMark maximum number of entries allowed

130 widest% = 20 : REMark longest word 10 characters long

140 DIM array$(max%-1,widest%)

150 :

160 number% = 0 : REMark how many entries currently in the list

170 CLS : CLS #0

180 :

190 INPUT #0,'Load which file > ';ip$

200 IF ip$ <> '' THEN

210 OPEN_IN #3,ip$

220 REPeat loop

230 IF EOF(#3) THEN EXIT loop

240 INPUT #3,array$(number%)

250 number% = number% + 1

260 IF number% >= max% THEN EXIT loop

270 END REPeat loop

280 CLOSE #3

290 END IF

300 PRINT number%;' entries in list so far.'

310 :

320 REMark enter new words to add to list (unless already in list)

330 added% = 0 : REMark running track of number of words added so far

340 REPeat program

350 IF number% >= max% THEN PRINT'Array full.' : EXIT program : REMark no

room for more

360 INPUT #0,'Word to add > ';word$

370 IF word$ = '' THEN EXIT program

380 Add_Entry word$

390 END REPeat program

400 :

410 REMark save the updated list (use same name if a list was loaded)

420 PRINT \ 'Number of added entries : ';added%

430 IF added% > 0 THEN

440 op$ = ip$

450 IF op$ = '' THEN INPUT #0,'Save as > ';op$

460 IF op$ <> '' THEN

470 PRINT #0,'Saving ';op$;' ...'

480 OPEN_NEW #3,op$

490 PRINT #3,array$(0 TO number%-1)

500 CLOSE #3

510 END IF

520 END IF

530 :

540 PRINT #0,'Program finished.'

550 STOP

560 :

570 DEFine PROCedure Add_Entry (new_word$)

580 LOCal lo%,mid%,hi%,loop,a

590 REMark if list empty, just insert at start

600 IF number% = 0 THEN

610 array$(0) = new_word$: number% = 1

620 PRINT '"';new_word$;'" added. Total entries = ';number%

630 added% = added% + 1 : RETurn

640 END IF

650 :

660 REMark binary search for insertion point

670 lo% = 0 : REMark lowest subscript

680 hi% = number%-1 : REMark highest subscript

690 REPeat loop

700 mid% = (lo%+hi%) DIV 2

710 IF Lower_Case$(new_word$) < Lower_Case$(array$(mid%)) THEN

720 hi% = mid% - 1 : IF lo% > hi% THEN EXIT loop

730 ELSE

740 lo% = mid% + 1 : IF lo% > hi% THEN mid% = lo% : EXIT loop

750 END IF

760 END REPeat loop

770 :

780 IF mid% > 0 THEN

790 REMark does the new word already exist in the list?

800 IF array$(mid%-1) == new_word$ THEN

810 PRINT '"';new_word$;'" is already in the list.'

820 RETurn

830 END IF

840 END IF

850 :

860 REMark shuffle up to make room for new word in correct place

870 FOR a = number% TO mid%+1 STEP -1 : array$(a) = array$(a-1)

880 array$(mid%) = new_word$

890 number% = number% + 1 : added% = added% + 1

900 PRINT '"';new_word$;'" added. Total entries = ';number%

910 END DEFine Add_Entry

920 :

930 DEFine FuNction Lower_Case$ (str$)

940 LOCal a,cde,t$

950 t$ = str$

960 FOR a = 1 TO LEN(str$)

970 cde = CODE(t$(a))

980 IF cde >= 65 AND cde <= 90 THEN cde = cde + 32 : t$(a) = CHR$(cde)

990 END FOR a

1000 RETurn t$

1010 END DEFine Lower_Case$

Listing 3 : binarysearch_bas

This listing is a bit longer than the others, because it’s a complete program to generate a word
list, although limited in the number of words it can handle. I’ve set the limit as 500 words in
line 120, each of no more than 20 characters long, set in line 130. Alter these if you wish to
adapt it for larger word lists.

What it does is to ask you if you wish to enter a ‘base’ file. If not and you wish to start a new
word list, just press ENTER to make a blank filename in line 190.

Now keep entering words until you wish to finish – enter a blank word to finish. The program
keeps a running count of the total number of words in the list using the variable ‘number%’. It
also keep a running total of the number of new words added in this session – the variable
‘added%’.

Once you have entered a word in line 360, it then calls the procedure Add_Entry to see if the
word should be added to the list or not. This procedure starts at line 570. It performs the
following actions:

1. If the list is empty, it simply adds the word as the first entry and returns (lines 600 to
640).

2. If not empty, it defines a set of pointers, marking the lower bound of the section (lo%),
upper bound of the section (hi%) and a median pointer (mid%) which it tries to set at
about halfway between the two bounds. When comparing strings, it uses the
Lower_Case$ function defined in lines 930 to 1010 to ensure that all comparisons are
done in the same case – if one of your toolkits has an extension called LOWER$ or
equivalent to do this, use that as it will be faster than a simple BASIC function like
this. Depending on the result of the comparison made in line 710, the pointers to the
bounds are adjusted accordingly until lo% becomes greater than hi%. When this

happens, it knows it has found the entry just above where your new word would go in
the file.

3. Now that we have found where the word would go, we check the entry just below this
(if there is one – line 780). If this is the same as our new word (line 800) we tell the
user that the word already exists in the list and don’t add the new word. Note the use
of ‘==’ to ensure case independent comparison.

4. If the word is not already in the file, we shuffle the part of the array above where the
new word would go up by one position in the array (line 870) - note how we do this
backward from the top of the array using the “STEP -1” to avoid accidentally
overwriting everything! Finally, line 880 places the new word into the list and we
increment the total number of words and the number of new words added (line 890)
before returning to ask for the next word to be entered.

Whilst the listing is quite long, do bear in mind that it is a complete working program and the
search routine we are interested in is mainly just the code in lines 670 to 760.

If the limit imposed by how large you can dimension QL string arrays is restrictive, what you
would then have to is to consider storing the list as fixed length entries in an allocated block of
memory, change the pointers to be floating point values rather than integers and try to
manipulate the strings in memory as though they were part of an array by using memory
string peeks and pokes and using move memory commands to do the shuffling of entries.
SBASIC has PEEK$ and POKE$ functions to help you do this. Sadly, it’s beyond the scope
of this article and not a programming job for the faint-hearted!

Conclusion

I hope that this article has been useful to some readers – we have covered a lot of
programming ground and it’s probably a bit much to take on in just in one go. The
programming techniques should prove useful to those wishing to handle textual data in large
files like this.

If anyone has ideas on how to improve these routines, or to take them a stage further, I’d be
pleased to hear from you and publish your ideas in a future issue.

In the meantime, I’ll try to make sure that the listings are placed on the website and library
disk ML01 (magazine listings) for those who’d rather save their typing fingers.

