
IF VER$ =

The title of this article is actually one of the shortest and potentially most useful pieces of code I've

found in all my years with the QL.

It's a simple little line of code which lets your programs do different things on different systems. By

and large, all versions of QL BASIC have been around long enough for us all to know what each

version can do. By checking the version of BASIC we can let a program do different actions, taking

advantage of facilities added to Minerva or SBASIC systems for example.

Probably the simplest example is that of a program which needs to be able to open a window to fill the

entire screen. On a QDOS machine, it is pretty safe to assume that the display will always be 512x256

pixels (the uQLx emulator can be an exception), but modern SMSQ/E systems can have screens with

many more pixels across and down the screen. SBASIC on these systems has extensions which return

the width and height of the screen, for example. The SBASIC function SCR_XLIM tells us how many

pixels across and SCR_YLIM the number of pixels down.

So, since SBASIC always has a VER$ of "HBA" all we need to do is test the version of BASIC with

VER$ and if it turns out to be SBASIC, we can call SCR_XLIM and SCR_YLIM, otherwise assume

bog-standard QDOS default values.

Here's a sample little program:

1000 DEFine PROCedure Cover_The_Screen

1010 wide = 512 : high = 256 : REMark QDOS defaults

1020 v$ = VER$

1030 IF v$ = 'HBA' THEN

1040 wide = SCR_XLIM

1050 high = SCR_YLIM

1060 END IF

1070 WINDOW #0,wide,high,0,0

1080 CLS #0

1090 END DEFine Cover_The_Screen

This little program lets channel #0 cover the entire screen on virtually any system. All it does is assume

first it's going to run on an old QDOS system without any high resolution screens, then it checks VER$

to see if it's running on an SBASIC system and if it is, tries the new keywords to make use of the new

facilities if they exist on this system.

Before we go any further, a small note about line 1020. Some older versions of QDOS have a minor

issue with the VER$ function which can cause problems if used directly in some complex expressions

such as IF clauses, so it is usually safest to assume that it is best to copy it to a string variable first, then

use the variable in IF phrases or string expressions. If the variable name I've used in these examples is

used in your programs, just add something like 1005 LOCal v$ to limit values to local within

procedures or functions.

If you have a graphical program which PEEKs and POKEs the display (naughty!) it can be handy to

extract the relevant information from the system where keywords are provided to do this. To PEEK and

POKE in the display on modern systems, we need to know the following in addition to the above:

(1) the base address of the screen, and

(2) how many bytes across the screen

We can extend the above example program to use the SCR_BASE and SCR_LLEN functions to return

the screen base address and screen line length in bytes respectively:

1000 DEFine PROCedure Cover_The_Screen

1010 LOCal v$

1020 wide = 512 : high = 256 : REMark QDOS defaults

1030 sbase = 131072 : REMark screen base address on Sinclair QL

1040 bpl = 128 : REMark line length in bytes on Sinclair QL

1050 v$ = VER$

1060 IF v$ = 'HBA' THEN

1070 wide = SCR_XLIM

1080 high = SCR_YLIM

1090 sbase = SCR_BASE

1100 bpl = SCR_LLEN

1110 END IF

1120 WINDOW #0,wide,high,0,0

1130 CLS #0

1140 PRINT #0,'Screen width = ';wide;' pixels'

1150 PRINT #0,'Screen height = ';high;' pixels'

1160 PRINT #0,'Screen base address = ';sbase

1170 PRINT #0,'Screen line length in bytes = ';bpl

1180 END DEFine Cover_The_Screen

On an original QL, you'll get values of 512 pixels wide, 256 pixels high, base address of 131072 and a

line length of 128 bytes. On a more modern system with bigger display, you'll gett he results for that

system. Where this can come in handy is to reliably save a screen picture. On a QL, this just involves

saving 32,768 bytes from address 131072. On a Q40, QPC, QXL etc this might be more complex as

both the size and location of the video screen can vary. But it's quite easy to work out, using the

SBASIC functions listed above:

2000 DEFine PROCedure Save_The_Screen (filename$)

2010 LOCal v$

2020 wide = 512 : high = 256 : REMark QDOS defaults

2030 sbase = 131072 : REMark screen base address on Sinclair QL

2040 bpl = 128 : REMark line length in bytes on Sinclair QL

2050 v$ = VER$

2060 IF v$ = 'HBA' THEN

2070 wide = SCR_XLIM

2080 high = SCR_YLIM

2090 sbase = SCR_BASE

2100 bpl = SCR_LLEN

2110 END IF

2120 SBYTES filename$,sbase,high*bpl

2130 END DEFine Save_The_Screen

This works out where the screen starts in memory, then saves a chunk from memory depending on the

height of the screen (the variable high) and the number of bytes per line.

To reload a screen, just LBYTES the screen to the relevant base address. We need to be careful that the

screen is the same size as the previously saved file, the length of which we can check with the FLEN

function of Toolkit 2 (built into SBASIC).

2150 DEFine PROCedure Load_Screen (filename$)

2160 LOCal fl,v$

2170 fl = FLEN(\filename$)

2180 bpl = 128

2190 sbase = 131072

2200 high = 256

2210 v$ = VER$

2220 IF v$ = 'HBA' THEN

2230 bpl = SCR_LLEN

2240 sbase = SCR_BASE

2250 high = SCR_YLIM

2260 END IF

2270 screenlength = bpl * high

2280 IF fl = screenlength THEN

2290 LBYTES filename$,sbase

2300 ELSE

2310 PRINT #0,'Unsuitable screen'

2320 END IF

2330 END DEFine Load_Screen

It is possible to harness Minerva extensions like this too. For example, QDOS has no function to tell

you the base address of the system variables, because they are always at a fixed address of 163840. On

a Minerva system, a second 32K screen may be in use at that address, so the system variables have to

move to another address. They may also be at a different address on SMSQ/E systems, because the

screen can vary in size for example. So we need a method of finding out where they are without having

to resort to machine code. The answer is that Minerva and SBASIC have a special form of the VER$

function which can return the base address of the system variables - VER$(-2)

3000 DEFine FuNction SystemVariables

3010 LOCal v$

3020 v$ = VER$

3030 sv = 163840 : REMark default for old QDOS systems

3040 IF v$ = 'JSL1' OR v$ = 'HBA' THEN sv = VER$(-2)

3050 RETurn sv

3060 END DEFine SystemVariables

So you can see that the underlying principle is to apply sensible default values which apply to an

original QL with a Sinclair ROM, then test the version of BASIC and if Minerva ("JSL1") or SBASIC

("HBA") are detected, use extended facilities.

Qliberator will allow you to compile programs like this, where extensions are typed into a program but

not always used, depending on system it runs on. Turbo won't - it tests for the extension being present

as the compiled task starts and stops with an error message if a program includes, say, the keyword

SCR_LLEN, but the system doesn't have that installed. So the technique is less useful in Turbo

compiled programs.

Exists

This is another very useful extension which can be used for the same sort of programming concept. It

checks through the name table for a given keyword and returns 1 if found, or 0 if not.

This allows a program to check for the existence of a particular keyword and take different actions

depending on whether or not it was found on the system. Again, less useful in compiled programs,

although very useful in interpreted programs.

EXISTS is a basic extension function by Phil Borman, available from the Toolkits page on my website

at http://www.dilwyn.me.uk/tk/index.html

A simple line like IF EXISTS('TK2_EXT') lets you check if Toolkit 2 extensions exist on your

system.

A good example might be checking if the Jochen Merz menu extension exists on this system. Just

check for an extension you know exists in menu_rext:

LET mr = EXISTS('FILE_SELECT$')

You can even check of pointer environment is installed:

LET pe = EXISTS('CKEYON')

This checks if the CKEYON (Cursor Keys On) extension is present, though this is less reliable as the

authors of the pointer environment might one day choose to leave this out of pointer environment or

SMSQ/E!

However, simple programming techniques like the above can help your program make use of facilit ies

on more recent systems, while still being able to run on older systems. I've found techniques like this to

be a useful and very basic way of updating old programs to run on modern systems without sacrificing

the ability to run on older systems.

