
CSV FILES

Dilwyn Jones

This article discusses a legacy PC file format called CSV (or Comma

Separated Values) and its application in helping us to transfer

spreadsheet or database files between QL and PC. At one time, CSV

files were to PCs what Export files were to QL Psion programs.

CSV files are fairly simple text files containing lists of values from a

grid, or columns of text, or fields of a database. Many QL programs can

generate the Psion export files, so I thought that if I could come up with

a program to convert the export files to CSV format it would be one

way of transferring spreadsheet and database data to a PC.

For example, if you have stored family history data in Archive, export

the Archive database to a normal export file then run it through this

little program (which I've called EXP2CSV_BAS) to convert the export

file to a CSV file, then transfer that to the PC and import it into the PC

program. So the rather long winded transfer method is:

1. Export the data from the QL program.

2. Run it through the EXP2CSV_bas program to convert to CSV file.

3. Transfer CSV file to PC.

4. Import into PC program.

Using this EXP2CSV_bas program, I have successfully transferred data

from Abacus and Archive to M$ Excel in Windoze, for example.

PSION EXPORT FILES

A Psion export file format is documented in the QL User Guide in the

Information section after the Psion program guides. Basically, the first

line contains a list of the field names, and subsequent lines contain the

data from each field exported. Each full record takes one line in an

export file. Strings are enclosed in quotes - if the string contains a quote

symbol, it must be doubled up, e.g. John "the man" Doe would need to

be represented as "John ""the man"" Doe". Numbers are not quoted.

The field names should end in '$' for strings, anything else is regarded

as a number. The first field should apparently always be text. Here's a

simple example, quoted from the manual:

"cashflow$","sales","costs","profits"<LF>

"January",1000,500,500<LF>

"February",1050,530,520<LF>

"March",1100,560,540<LF>

In this example, each record has four fields called cashflow$, sales,

costs and profits. The $ in cashflow$ indicates this is a string type field,

The other 3 fields are all numeric. Each line ends with a LF CHR$(10)

according to the manual, although in my experience export files also

work where the lines end with CR+LF too.

Export files should usually end with CHR$(26) to ensure that the end of

file can be generated. The Psion programs decide this for themselves

when exporting data, you need only worry about this if creating your

own export format files, e.g. using PRINT# as shown in the QL User

Guide.

CSV FILE FORMAT

In a CSV file, each record is stored as a line made up of all the fields of

that record, separated by a comma. A field can be "folded" (contain a

linefeed) as long it's enclosed in double quotes.

The text of a field doesn't have to be enclosed in double quotes, but if

the field is to contain a double quote symbol, the field text must be

bounded by double quotes, and the double quote itself should be

represented by a double pair of quotes, e.g. a field containg the text

DILWYN "QL" JONES would be represented by "DILWYN ""QL""

JONES"

Likewise, if the field text is to contain a comma, that field should be

enclosed in quotes, e.g. SAY 1,2,3! should be "SAY 1,2,3!"

Leading or trailing spaces in a field are normally ignored and stripped

off when loaded, although by putting the text of the field in quotes you

can force it see the spaces as part of the data.

If the field text is enclosed in quotes, these quotes are the "field

delimiters", i.e. they show the start and end of the field.

Just because a field data is enclosed in quotes, you shouldn't assume it's

text. The quotes may enclose a number - the type of data is generally

deduced from whether or not the field contains a number, not by

whether the field is enclosed with quotes.

Unlike the first line of an export file, the first line of a CSV file need

not contain field names, although it is quite legitimate for a program to

supply them and for the importing program to ask the user if the first

line contains field names or not and work accordingly.

Between records (lines) you can use LF (10) or CR+LF (13+10).

EXAMPLE CSV FILE

Using the example quoted from the QL User Guide above, the first line

is optional, although most CSV files do not include a first line like this.

 cashflow$,sales,costs,profits

The above line can be included if you wish, but it may just appear as the

first record in some programs (easy enough to delete if required).

Generally, only the data appears in the CSV file:

 January,1000,500,500

 February,1050,530,520

 March,1100,560,540

Quite simple isn't it (until you start messing with quotes and commas,

etc, as described above). Generally, adding quotes does no harm if done

properly, other than adding a bit of extra size to the file with redundant

quote marks. PC programs will generally analyse the data on importing

to find out what's numeric and what's plain text.

Figure 1 - The EXP2CSV_bas listing.

100 REMark EXP2CSV_bas by Dilwyn Jones, Feb 2008

110 REMark convert Psion export file to CSV format

120 :

130 CLS : CLS #0

140 INPUT #0,'Psion export file name > ';ip$

150 INPUT #0,'CSV file name > ';op$

160 OPEN_IN #3,ip$: OPEN_NEW #4,op$

170 include_fieldnames% = 0 : REMark change to 1 to include

field names

180 lf$ = CHR$(13)&CHR$(10) : REMark end of line characters for

CSV file

190 :

200 REMark read field names list from export file

210 fields = 0 : last = 0 : PRINT'FIELD NAMES : ';

220 REPeat program

230 fn$ = File_Entry$: fields = fields + 1

240 PRINT !fn$; : IF include_fieldnames% = 1 : PRINT #4,fn$;

250 IF last = 1 THEN

260 IF include_fieldnames% = 1 THEN PRINT #4,lf$;

270 EXIT program

280 ELSE

290 PRINT #4,',';

300 END IF

310 END REPeat program

320 PRINT \\

330 :

340 CLS #0 : records = 1 : REMark read records 2 to n

350 :

360 REPeat program

370 FOR a = 0 TO fields-1

380 fn$ = File_Entry$

390 IF fn$ = CHR$(26) THEN EXIT a

400 PRINT !fn$;

410 IF (',' INSTR fn$) OR ('""' INSTR fn$) THEN

420 PRINT #4,'"'&fn$&'"'; : REMark quote strings

containing , or "

430 ELSE

440 PRINT #4,fn$;

450 END IF

460 IF last = 1 THEN PRINT #4,lf$; : EXIT a : ELSE PRINT

#4,',';

470 END FOR a

480 PRINT

490 IF fn$ = CHR$(26) THEN EXIT program

500 records = records + 1 : AT #0,0,0 : PRINT

#0,'RECORDS:';records

510 END REPeat program

520 :

530 CLOSE #3 : CLOSE #4

540 :

550 PRINT #0,'Program finished.' : STOP

560 :

570 DEFine FuNction File_Entry$

580 IF EOF(#3) : RETurn CHR$(26)

590 ch$ = '' : item$ = INKEY$(#3)

600 IF item$ = CHR$(26) : RETurn item$

610 IF item$ = CHR$(10) OR item$ = CHR$(13) : RETurn ""

620 IF item$ = '"' THEN

630 item$ = "" : Numeric = 0

640 ELSE

650 Numeric = 1 : IF item$ = ',' THEN RETurn

660 END IF

670 REPeat get_info

680 ch$ = INKEY$(#3)

690 IF ch$ = CHR$(10) OR ch$ = CHR$(13) THEN

700 last = 1

710 REPeat fl_loop

720 IF EOF(#3) : EXIT fl_loop

730 fl_loop = FPOS(#3)

740 k$ = INKEY$(#3)

750 IF k$ <> CHR$(10) AND k$ <> CHR$(13) THEN BGET

#3\fl_loop : EXIT fl_loop

760 END REPeat fl_loop

770 EXIT get_info

780 END IF

790 IF ch$ = ',' AND Numeric = 1 : last = 0 : EXIT get_info

800 IF ch$ = '"' OR (Numeric = 1 AND ch$ = ',') THEN

810 k$ = INKEY$(#3)

820 IF k$ = CHR$(10) OR k$ = CHR$(13) THEN

830 last = 1 : REMark end of line

840 REPeat fl_loop

850 IF EOF(#3) : EXIT fl_loop

860 fl_loop = FPOS(#3) : k$ = INKEY$(#3)

870 IF k$ <> CHR$(10) AND k$ <> CHR$(13) THEN BGET

#3\fl_loop : EXIT fl_loop

880 END REPeat fl_loop

890 EXIT get_info

900 ELSE

910 IF ch$ = '"' AND k$ = ',' THEN

920 last = 0 : EXIT get_info

930 ELSE

940 BGET #3\FPOS(#3)-1

950 END IF

960 END IF

970 END IF

980 item$ = item$ & ch$

990 END REPeat get_info

1000 RETurn item$

1010 END DEFine File_Entry$

Some notes on the listing, in case you wish to adapt it. There is no error

trapping, to keep the program reasonably short for publication.

The program opens channel #3 to the input file (the export file) and

channel #4 to the output file (the CSV file).

The main routine is the function called File_Entry$. This fetches one

field of the file at a time. It returns the field value as a string and sets

the variable "last" to indicate if it is the last item on the current line. As

it stands, the routine uses global variables, many could be set as LOCal

variabkles if you wish. The variable "last" needs to be global.

Line 170 sets a variable called "include_filenames%" to determine if

the first line of the export file (the field names) is added to the CSV file.

You can see how this is done in the first loop called "program". This

loop also counts the number of fields on each line (fields per record, the

variable "fields")

The second loop called "program" does the task of stepping through the

remaining records. The "a" loop steps through all fields of each record.

Note how line 410 determines whether the field needs to be enclosed in

quotes or not in the CSV file output, by using INSTR to locate quotes

or commas in the strings. You may wish to extend this to check for

leading and trailing spaces in strings as these may be stripped by some

PC programs if unquoted.

The program prints the data to the screen, but not necessarily in the

same format as the file output.

